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Mixed basin boundary structures of chaotic systems
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Motivated by recent numerical observations on a four-dimensional continuous-time dynamical system, we
consider different types of basin boundary structures for chaotic systems. These general structures are essen-
tially mixtures of the previously known types of basin boundaries where the character of the boundary assumes
features of the previously known boundary types at different points arbitrarily finely interspersed in the
boundary. For example, we discuss situations where an everywhere continuous boundary that is otherwise
smooth and differentiable at almost every point has an embedded uncountable, zero Lebesgue measure set of
points at which the boundary curve is nondifferentiable. Although the nondifferentiable set is only of zero
Lebesgue measure, the curve’s fractal dimension (dapending on parameterstill be greater than one. In
addition, we discuss bifurcations from such a mixed boundary to a “pure” boundary that is a fractal nowhere
differentiable curve or surface and to a pure nonfractal boundary that is everywhere smooth.
[S1063-651%9902401-7

PACS numbegps): 05.45.Gg

I. INTRODUCTION Yii1=Xn, (1b)

The coexistence of two or more attractors provides fowith A=1.150 and)=0.3. For these parameter values there
different long-time behaviors of a dynamical system dependare two attractors giving the long-term behavior of the sys-
ing on its initial conditions. The set of points that asymptoti-tem for almost all initial conditions; the attractor for points in
cally approach a given attractéits basin of attractionwill ~ the black basin shown in Fig.(d is (x,y)—o, while the
have a boundary with the basin of attraction of the othemttractor for points in the blank basin is a periodic orbit of
attractor or attractors. Knowledge of the basin and its boundperiod 1.
ary thus supplies important information allowing a prediction ~ (b) The boundary can locally have the character of a Can-
of the long-term behavior of a system. Basin boundaries caipr set of smooth curves or surfaces. This is illustrd@dn
be either smooth or fractal and have been extensively studigdig. 1(b) and the blowup in Fig. (t) for the Heon map with
[1-6]. This paper is motivated by a recent study in which weparametersA=1.405 andJ=0.3. (In this case the attractor
observed a basin boundary structure that we believe has preerresponding to the blank region is a periodic orbit of pe-
viously not been seen or not¢d]. Our previous study in- riod 2)
volved a four-dimensional flow. This presented difficulties () The boundary can be a continuous nowhere differen-
for computational analysis and verification of the suspectediable curve or surface. A simple example of this is provided
boundary structure. For this reason, in this paper we restriddy the map1,2]
most of our discussion to the case of simple maps, where

understanding and computational verification are readily Yn+1=NyYn+ COS27X,), (28
available. We begin by reviewing some relevant background
material. ’ Xn+1=NxX, modl, (2b)

with A, and\ greater than 1 andl, an integer greater than
A. Background Ay. This map has no attractor with finiteand almost all

) _ ) . initial conditions generate orbits that approach either
For typical dynamical systems, three basic characteristic_, ory=—c, which we regard as the two attractors for the

topologies[1-6] of basin boundaries have been fouigd. system. Figure () shows the basin structure for this system
(@ The basin boundary can be a smooth curve or surfacgyiph \ =3 and\,=1.5. Blank corresponds to the basin of
An example of thif9] is shown in Fig. 1a) for the Heon y=+ and black to the basin gf= —. In this case one

map can analytically derive the equation of the basin boundary
1,2
Xne1= A= x2=y,, (19 12
y=—2 N, cog2mn ) =fy(x). (3)
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FIG. 1. (a) Smooth basin boundary for the  hen map.(b) Fractal basin boundary for the"Hen map.(c) Enlargement ofb). (d) Basin
boundary that is a continuous nowhere differentiable curve.

For A\y>\,, on the other hand,(x) is everywhere differ- as the basin stripes become thinner, they also become longer
entiable and consequently has dimension orfracta). (folding back and forthand their lengths approach infinity.

For typical dynamical systems represented by two-
dimensional invertible maps and three-dimensional flows,
boundary types andb and mixtures theredfl0] appear to In this paper we give examples of basin boundaries that
be the only types of basin boundaries. Boundary tgge  are simultaneously of type and of either typea or b, at
possible for higher-dimensional invertible mapsap dimen- djfferem points on the boundary. We also discuss the trgnsi—
sionality =3) or flows (dimensionality =4) or for two- tion, with system parameter variation, between this mlxed
dimensional noninvertible mags.g., Eqs(2)]. boundary type e_1r_1d other_ boundary types. In Sec. Il we dis-

Although basin types and ¢ are both fractal, they are cuss the possibility of mixed type and typea boundaries.

fundamentally different. One aspect of this difference is pro-We characterize these boundaries by use of thislddoex-
vided by the concept of accessibilit§]. We say a poink on ponent[1~1]. It is shown that ? type_ of.contlnuous fractal

a basin boundary iaccessiblérom a given basirB if itis ~ CUveY=T(x) results whose dimension is greater than one,
possible to draw a finite length curve connecting a point inalthough the functiorf(x) is differentiable at all pointsc

the interior ofB to x such that the curve never crosses a basirfXCept for a set of zero Lebesgue measure where thigeHo
boundary. Clearly, this is the case for a boundary of tgpe €Xponentis less than one. In Sec. Ill we consider bifurcations
It is also the case for a boundary of typgFor example, for whereby the structure of.the basin boundary qhanges as sys-
the case of Eq(3), any point on the boundaryx{,y,), tem paramet_ers are varied. In Sec. IV we give a map ex-
wherey, = fy(xp), is accessible from a pointg,y,+A) ar_nple of a m[xed type—typeb boundary and then compare
with A>0 (A<0) in the interior of they—s + (y— — ) with our previously observed boundary structure found in a

basin by a vertical line of lengthA| connecting the two four-dimensional flow7].
points] In contrast, for the example of Figs(k) and Xc),
boundary points accessible from one basin are inaccessibl
from the other basin and many boundary poiimsact, in an
appropriate sensenost boundary points are inaccessible
from the interior of either basin. This occurs due to the Can- A. Holder exponent
tor set of lines boundary structure shown in Figc)lIn

particular, we can consider a boundary line in Fige) lsuch boundary of the map given by Eq@a) and (2b) is by con-

bt s 2 it st ofaler bourdary Ines o eiher e sieraion o th Fier exponent. Vi define e ar ex
side. In this case the chosen line segment is sandwiched ;‘épnentH(x) of & functiony =f(x) at the poinix by

tween an infinite set of ever thinner black and blank basin H(x)= lim inf{[In|f(x+Ax)—f(x)|]/In|Ax|} (58
stripes accumulating on it from both sidgd. Furthermore, Ax—0

B. Outline

Ié. A CONTINUOUS CURVE BASIN BOUNDARY THAT IS
DIFFERENTIABLE AT ALMOST EVERY POINT BUT
HAS A NONTRIVIAL FRACTAL DIMENSION

One way to derive the dimension formul@ for the basin
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if the right-hand side is less than 1, akt{x)=1 if the
right-hand side is greater than 1. More informally we write

Ay~|Ax[", (5b)
where Ay=|f(x+Ax)—f(x)|. If H(x)>0, thenf is con-
tinuous atx, andf is not differentiable ak for H(x)<1. If
f(x) is differentiable at, thenH(x)=1.

Now consider two points on the basin boundaxy,/)
and X+ AXq,Yo+ Ayg), whereAx, andAy, are small, and
iterate them forwarah steps using Egs.(8) and 2Zb). They
move to a pair of new points, which we denote, {y,) and
(Xp+AX,,y,+Ay,), both of which are necessarily also on
the basin boundary. Takinglarge but not too large, we may
still considerAx,, and Ay, to be small. Since the Hder
exponent is the same at{,y,) and &,,y,) (we show this
laten, we have

Ayo~[Axol",  Ay,~]Ax,[™. (6)
The two Lyapunov exponents for the mé¢s) and (2b) are
h;=In A, andh,=In A . Thus mappingAx, and Ay, for-
wardn steps, ifH<1 (implying |Ay|>|Ax|), we have from
(2a) and (2b) that

Ax,~expnh))AXxqy, Ay,~expnhy)Ayg. (7)
Combining Egs(6) and(7) we obtain
H:h2/h1 fOI’ hl>h2. (8)

For h;<h, the curve is differentiableH{=1). The box-
counting dimensiom of a curve on which the Hder expo-
nent isH is given by[12]
d=2—-H, 9)
which with Eq.(8) yields Eq.(4). Equation(9) results from
the following simple argument. Consider angrid in x-y
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FIG. 2. Basins of attraction for the map given by E(&) and
(2b') for Ay=1.20 with(a) r=3.79 and(b) r =3.835.

one the result i®1;(x) =h,. Note, however, that as discussed
subsequently, there are “zero probability” initial conditions
for which hy(x) #h; .]

Now changer so that it yields a period-3 attractor in the
period-3 window. In this case almost every initial condition
for Eq. (2b) goes to the period-3 attractor. Henbg< 0 for
almost everyx so thath,=In Ay>h; andH=1, implying
that the curve is differentiable at almost every poinNote,
however, that there is still a zero Lebesgue measure set of
points for which the orbits of the logistic map are chaotic

space. For any interval (x, X+ €), the number of boxes from (but not attractind 14]). For these exceptional initial points

the grid necessary to vertically cover the segment of th

curve y=f(x) in that x interval is of order|f(x)—f(x
+ €)|/ e~ €'/ € and the number of intervals needed to cover
a finite range ok scales like 1¢. Thus the number of boxes
needed to cover the curve scales like?IH, which gives
Eq. (9).

We now modify the map given by Eq&a and(2b). In
particular, we replace Eq2b) by the logistic mag13]

Xn+1= MXn(1=Xp). (20)

Choosingr and A, such that a typical orbit for Eq2b’) is

chaotic with Lyapunov exponerh_tl> h,=In X\, we obtain
the fractal nowhere differentiable curve shown in Figa)2
(r=3.79 and)\y=1.2Q. The nowhere differentiability and
fractality follows fromh;>h, and Egs(8) and(9). Thus the
boundary curve in Fig.(@) may be regarded as being similar

to the one shown in Fig.(tl) for Egs.(2a) and(2b). [Hereﬁ1

e?11>0 and possibly we may also havg>h,. The conse-

guence of this is shown in the example illustrated in Fig) 2

for r=3.835 and\,=1.20. We see that the curve separating
the y=+c0 basin(blank) from they= —« basin(black) is
smooth in many intervals, but that there are also many points
where the boundary appears to have a nondifferentiable
spike. This is a consequence of the repelling chaotic set and
on the basis of Eq(8) we claim that those points at which
spikes H<1) appear correspond fovalues on the repelling
chaotic set withh;(x)>h,.

B. Fractal dimension

One interesting aspect of this type of basin boundary
structure[Fig. 2(b)] is that the basin boundary may have a
fractal dimension exceeding 1, even though it is continuous
everywhere and is also differentiable at all points except for
a set ofx of zero Lebesgue measure. To see this, we start by

denotes the value of the logistic map Lyapunov exponentonsidering the following hypothetical case. Suppose (hat

that results for almost every choice of initial conditigrn
0<x<1. That is, if an initial condition is chosen with uni-
form probability density in 82x<1, then with probability

there is a set ok points S of zero Lebesgue measure and
fractal dimension 6:d,<1 on which the Hider exponent
has the same value for alle S and O<H<1 and(ii) the
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boundary is smooth at all oth&moints (H=1). Again con-  Holder exponent of the measure[the Hdder exponent uni-
sider ane grid in x-y space. The number efboxes needed to  form on the measurg is by Eq.(8) equal toh, /h; (), with

cover the smooth portion of the curve scales as The F1(w) the Lyapunov exponent for the measyrk Equation
?11) is motivated by the observation that the dimension of
the union of a finite(countable infinit¢ number of sets is
equal(at least equalto that of the set whose dimension is

argest. In particular, if we evaluatey(um)=d(u)

nondifferentiable part of the curve scales liked®J(e"/¢),
where the first factor is the number efintervals inx con-
taining nondifferentiable points and the second factor is th
number of boxes needed to vertically cover that part of th

boundary curve lying in such aa interval in x. Thus we  —N2/hy(u) for any invariant measur¢not necessarily the
obtain the following result for the box-counting dimension of Measure that maximizeg(x)], then application of Eq(10)
the curve: with this value inserted fod,—H yields a lower bound for
d!
L [1FdeH i deH 0
= - 10 ~ 1T+ x(p) if x(u)>0
1 if dy<<H. d=0d(u)= (12)

1 if x(u)=<O0.

In the above argument we have assumed that tHeedo
exponentH is the same for all pointg in S and thatH=1 Furthermore, ifx(u) is positive for anyu, then Eq.(12)
(differentiable everywhere else. For our basin boundary ex-provides a sufficient condition for the box-counting dimen-
ample[Fig. 2(b)] this is not the case. In particular, the one- sion of the basin boundary curve to be greater than one. In
dimensional mag2b’) has many ergodic invariant measures practice, in a numerical example, such as that of Fig),2
embedded in the set of points that do not go to the period-8ve have no way of performing the maximization prescribed
orbit. For example, there are an infinite number of unstabléy Eq.(11b). (For a special example that is analytically solv-
periodic orbits embedded in the repelling chaotic invariantable see the AppendixThus, in general, the only numerical
set and these, in general, have different Lyapunov exponentesults accessible to us will be by use of a particular measure
h; from each other. As a result of E¢B) they also have and Eq.(12). In this regard we shall be utilizing the “natu-
different Hdder exponents ih;>h,. Nevertheless, there is ral” measure on the repelling invariant chaotic set of the
an important uniformity property of the Hiter exponents: one-dimensional maf2b’). We denote this measuye, .

For any ergodic invariant measurg there is a unique con- In addition to EQ.(12), there is a second useful result
stant Hdder exponent value such that the set of x values foobtainable from Eq(11). Specifically, the border separating
which H(x) takes on this value hasmeasure 115]. the cased>1 from the cased=1 (i.e., xmax=0) gives a

To see that this must be so we first note that, by thecondition onh,. This condition can be determined by noting
smoothness of the map, one iterate of the map applied t0 @at the dimensiow,(u) of a measure of a one-dimensional
small region of the boundary curve results in an approximatenap is[16]
linear deformation of the small region. Thus by Efa), H

at a point and at its iterate are the same. Now assume that the 5 Emel(:“)
italicized statement above is not true. Then there is a number dy(pm)=—= , (13
H, such that we can define two sets»faluesS; andS, ha()

for which w(S;)>0 andu(S,)>0 with H(x)=H, for all x -

in S; andH(x)<H, for all xin S,. SinceH is invariant to ~ Wherehy,{x) is the metric entropy fo. The condition
one application of the map, no iterate of a point3ncan  x,.,=0 then gives[see Eq. 1(b)] h2=limﬂsupﬁme[(ﬂ).
map toS, and vice versa. This contradicts the ergodicity of The right-hand side of this equation is just the topological
&, thus proving thaH must be the same for a setxobalues  entropy, which we denoté,,,. Thus we obtain from Eq.
of u measure 1. Note that, by Oseledec’s multiplicative er{11)

godic theorem, the Lyapunov exponents are also the same

for almost every point with respect to an ergodic meagure d>1 for hy<hyp, (149
[Thus, for any ergodic invariant measure, the two sides of

Eq. (8) are constant for almost al with respect tou, H d=1 for hy=h,. (14b
= hZ/hl]

With this knowledge we can now make a modification of ~We now apply Eq(12) to the case shown in Fig(d. We
Eq. (10) that we conjecture applies to cases such as our exevaluate the lower bound(u,) from Eq. (12). We then
ample in Fig. 2Zb), directly evaluated by use of the uncertainty exponent

method[1,6] and compare with the predicted lower bound.
B 1+ Xmax if Xmax>0

d= (113 To findhy(u, ) atr=3.835[the value used for Fig.(B)],
1 if Xmax=0, we sprinkle many initial conditionbl randomly in the inter-
val [0,1] and iterate each on&>1 iterates(say T=100).
where We then determine those initial conditions whose orbits have
_ ~ still not yet fallen close to the period-3 orbit at iterdtéhere
Xmax=lim su dy(x) —ha/hy(p)] (11 we, somewhat arbitrarily, define an orbit as falling close to
g the period-3 orbit if it is ever within a distance of 0.01 of the
is the maximum value over all ergodic invariant measyes middle point of the three points visitedSelecting those and
for the map(2b’) of the dimensiond,(u) of x minus the averaging their Lyapunov exponents computed over the time
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FIG. 3. In¢(e) versus Ine.

interval 0 toT—5, we obtain an estimate of the Lyapunov
exponenth; for the natural measure on the repelling invari-
ant chaotic set(The true value is obtained in the limN
—o0, T—o0,) In this way we obtain
hi(p,)=0.498. (15)
To obtaind,(u,) for the case where. is the natural
measureu= u, , we note that in this cadd 7]

~ ~ 1
Pmed sy ) =ha(uy)— ;7 (168
which from Eq.(13) gives
~ 1
hl(IL'L*)_ ;
Ay(py)=—=——, (16b
) R )

where 7 is the decay time of the repelling invariant chaotic
set. This gives the lower bound fdf

1

- hem 7
d *):2_~ . (17)

(r hy(pey)

The decay timeris numerically obtained by sprinkling many
initial conditions uniformly in[0,1], iterating them, and re-
cording the number of orbithl(t) at iteratet that have still
not yet fallen within some small neighborhood of the
period-3 orbit. For large, [ N(t)/N(0)]~exp—(t/7). Thus
to find 7 we plot I N(t)/N(0)] versust, fit a straight line to
the resulting data, and estimate- 46 minus the slope of this

Ly

FIG. 4. Graph ofg,(x) for r=4.1.
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FIG. 5. (a) Basin boundary for the map given by E¢8a) and
(21"). (b) Enlargement ofa). (c) Basin boundary for the map given
by Egs.(2a) and (2b").

0.766

line. We obtain 1/=0.041. Using Egs(15) and (16b) to-
gether withh,=1In Ay=1In 1.20=0.182 in Eq.(17) yields

d(p,)=1.55. (18

As previously mentioned, the direct calculation afis
done by use of the uncertainty exponent. To do this we
choose some region ofy space containing the boundary
[e.g., the region shown in Fig(ld]. We then sprinkle many
initial conditions §;,y;), i=1,2,...,N with N very large,
randomly in this region. Next we perturb each initial condi-
tion to a new point X; + €,y; + €). We then iterate each pair
(x;,y;) and its perturbation. The fraction of original poims
for which the point and its perturbation eventually go to
different attractorgin the present example, to large positive
y and large negativg) is denotedd(e). For a boundary that
is everywhere smootip(e) scales likee for small . For a
boundary with box-counting dimensiah>1, on the other
hand, ¢(e) scales likee* with 0<a<1 and a=D-—d,
whereD is the dimension of phase spddeg6]. (This shows
the practical importance of the existence of a fractal basin
boundary; ifa is substantially less than one, the probability
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TABLE I. Characterization of boundary types 3, y, and é.

Boundary d Set ofx for Nondifferentiable  xmax  Hmin H Figure
types smooth set set
a 1 all x empty <0 1 1 1a)
B 1 Lebesgue measure one >#,>0 <0 <1 1 7(b)
v >1 Lebesgue measure one >H,>0 >0 <1 1 2b) 7(c)
) >1 empty d,=1 >0 <1 <1 2(a)

of incorrectly predicting the attractor from an initial condi-
tion with some small error in its specification is greatly en-
hanced. Figure 3 shows a plot of I(€) versus Ine for the
example of Fig. ?). The slope of a straight line fitted to this
data ise=0.44, corresponding to

d=2—-a=1.56. (19
This is consistent with the lower bound estim#18) and
indeed the lower bound estima(&8) is close to the esti-
matedd value in Eq.(19).

It is instructive to consider another example of this type of
boundary. For this example we again use &g for they
component of the map. For thecomponent of the map we
use

1
MXp(1—Xp) for x,=—7

Xn+1=0r(Xp)= 1 5r 1 (21)
O.S(xn+z 16 for X”<_Z'

The map functiorg,(x) is continuous and is graphed in Fig.
4 for r=4.1, which is the value we use below. Since4,
there is only a chaotic transient set irk@<1; almost every
initial condition in 0<x<<1 eventually falls into the loss
regionL (Fig. 4), two iterates after which it maps to negative
X, and then is attracted by the fixed point x, <0 (Fig. 4).
Thus almost all initial conditions for the one-dimensional
map(2b’) go tox=x, . There is, however, an invariant cha-
otic Cantor set in &x=<1 that remains in &x=<1 forever.
Thus, as in our previous examdleig. 2(b)], for A, not too
large, we expect singularitie$l(< 1) on this Cantor set. Fig-
ure §a) shows the resulting basins for the case=1.3 and
Fig. 5(b) shows a blowup of a small region of the boundary
in Fig. 5(a). Measurements of the uncertainty dimension in
this case givel=1.53. Thus the boundary of Fig(& has all
the same essential features as the boundary of Hijy. 2

C. Typicality

We claim that basin boundaries of the character we hav
been discussing should occur in cases that might naturall
arise in the consideration of dynamical systems in typical

nomena we have demonstrated, we modify our f2apand
(21") to couple they dynamics to thex dynamics. To this end
we replace Eq(2b") by

Xn+1= gr(Xn) +0.06y,. (210")
Figure 5c) shows a blowup of a small section of the basin
boundary for the two-dimensional map given by E(Z)
and(20") with A =1.3 andr =4.1[as in Fig. %a)]. Compar-
ing Figs. 8b) and Jc), it is seen that they appear visually to
have similar character.

One difference between the example of Fi¢h)5and the
example of Fig. &) is the following. For the example of
Fig. 5(b) the boundary is a functiop= f(x). That is, there is
a rectangular coordinate system such that for eatttere is
one and only one boundary point, thus determining a unique
value ofy. For Fig. Kc) it is not clear that such a nice
coordinate system could be found and this situation is to be
expected in typical cases. Thus we seek to characterize the
potential common features of the example in Fi¢h)5and
cases like that in Fig.(8) in such a way that these charac-
terizations are independent of coordinate system. We pro-
pose the following properties as potential coordinate-system-
independent characterizations on the basis of which we say
that the basin boundaries in Figgbband Hc) are similar.

(i) All boundary points are accessible from both basins.
(As discussed in Sec. | A, this is not the case for type
basing[e.g., Figs. 1b) and Xc)].)

(i) The boundary is smooth at all points except for a
totally disconnected set of nonsmooth poifite., it is not
possible to connect any two points in the nonsmooth set by a
curve completely contained in the nonsmooth.seurther-
more, any neighborhood of a point where the boundary is not
smooth contains smooth piec¢g/e have verified the latter
for Fig. 5(c) by making successive blowups around one of
the nonsmooth pointk.

(iii) The boundaryalthough nonsmooth only on a set of
points of box-counting dimension less than phas a box-
counting dimension greater than ofigsing the uncertainty
exponent method we have estimated that the dimension of
the basin boundary in Fig.(§) is d=1.48]

e

INI. CHANGES IN BASIN BOUNDARY STRUCTURE WITH
VARIATION OF SYSTEM PARAMETERS

applications. While some evidence of this is provided by the

differential equations examplgr] discussed at the end of
Sec. IV, we note that the examples we have discussed so f
have the feature that thedynamics is uninfluenced by the
evolution ofy. This is a special type of property not to be

The types of basin boundaries shown in Figg)2a no-
arhere differentiable curve with dimensiai>1) and in Fig.
2(b) (an almost everywhere differentiable curve with-1)
are not the only possible basin boundary types for the map

expected in typical systems encountered in practice. Tgiven by Egs(2a) and(2b'). In fact, based on the discussion

verify that this special feature is not responsible for the phe

in Sec. Il [particularly Egs.(8)—(14)], we can distinguish
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(a)

FIG. 6. Graph ofd versush, for (a) r=3.835 andb) r=3.79.

The values oh; and hiop in 6(b) are estimated from the graph of
these quantities versusin Ref. [21].

four boundary types depending on the map parameters. We
label these boundary types 83, v, andé, in order of increas-
ing fractality: type «, everywhere smooth curvel € 1); type
B, smooth almost everywhere with singularitigs(x) <1]
on a fractal set ok and a curve dimensiod=1; type v,
same asB, but d>1; andtype 6, Weierstrass curvéi.e.,
nowhere differentiable and>1).

The boundaries in Figs(& and Zb) are of typessandy,
respectively. Table | provides further characterization of themap Lyapunov exponent for E¢20") assumed for almost
above boundary types. In TableH,,;, denotes the smallest €very initial condition in 6sx=<1 (i.e., if an initialx value is
Holder exponent at any point on the boundary curve, whichchosen randomly, with probability 1, the resulting Lyapunov
from Eq.(8), is exponent ish,).

In order to see how these different boundary types arise,
=—° (20)  consider Fig. @), which schematically shows the dimension
Lmax of the basin boundarg (some points numerically deter-

_ ] ) ) mined by the uncertainty exponent technique are shown as
if the right-hand side of Eq(20) is less than 1, an#l i, solid dots in the figurd19)) as a function ofh,=In\, for

=1 otherwise. In Eq(20), h; _ denotes the logistic map —3.835. Thisr value is that used for Fig.(B) and yields a

Lyapunov exponent maximized over all invariant measureseriod-3 attractor for the logistic map. Consequerttlys0
[18]. Also, H in Table | is the Hider exponent assumed for (this will imply that a types boundary does not occur for
initial x at almost every point in €x=<1, which from Eq. this casg¢ Also shown in Fig. 6a) as vertical dashed lines

0.2 0.4 0.6 0.8
x
FIG. 7. Graph of basin boundary pictures fay r =3.835 and
Ay=2.1,(b) r=3.835 and\,=1.7, and(c) r=3.835 andch,=1.3.

(8) is are ranges where boundaries of typesd, and y occur. In
region «, h, exceeds the Lyapunov exponent of the logistic

H= E 21) map forall initial conditions inx, h,>h,; . Thus, by Eq.
h, (8), H=1 everywhere and the curve is smooth. An example

: : . , Ny of this is shown in Fig. @).
if the right-hand side of Eq(21) is a positive number less  As h, is decreased, there comes a point where it passes
than 1, andH=1 otherwise. The quantiti, is the logistic ~ through the largest possible Lyapunov exponlepn'gax. For
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1.0 1.65
1.46
0.8
1.27
~ 0.6 >
\&_}. 1.0818
> 0.4} .
0.89 P
0.2¢ 0.70 : .
0.0 0.354 0.364 0.373 0.383
. L . T
-1.0 -0.6 0.0 0.5 1.0
x
(b) 4.02
2.2 i 3.95
/1 . 3.88
3.82
—
B
< 0.0 -1 3.75
=
3.68 L5
—1.1 0.95 1.00 1.05 1.10
0/m
—2.2 : : FIG. 9. (a) Basins of attraction fory— +o (blank andy
-22 —-1.1 0.0 1.1 22 — —o (black for the map given by Eqg2b”) and (2d). (b) Ba-
Y sins of attraction(Fig. 6 of Ref.[7]).

FIG. 8. (a) q(x) versusx. (b) M(y) versusy.

_ _ becausey,ax<0, the curve dimensiom is still one [Eq.
hp<h; _ there is a set ok points whereH(x)<1 and the  (11)]. An example of such a boundary is shown in Fi¢p)7

boundary curve is nondifferentiablésingula) at these A further decrease dfi, eventually results inyma>0 as
points. When this first occurggmay is still negative and so the border between regigiiand regiony is crossed. By Eq.
d=1.In fact, it is expected that, _ is attained for a low- (14) this occurs ah,=h;.,. The topological entropy in a
period unstable periodic orbft8]. In this case, the appli- Window of the logistic map is constafite., independent af
cable measure is thé measure on the periodic orbit and for I in the window and may be computed analytically from
d()=0 for this . Consequently, ah,=h, , we have cpn5|derat|on of the symbolic dynarmcs asgouated with the
— ho/h. <0 max given window. In the case of the period-3 window, the topo-
Xmax 2 M max =7 i i logical entropy is the logarithm of the golden mebp,
We have not determined the precise pdipt hlmax COr- —jn[(1+5)/2]=0.483 and regiony corresponds tch,
responding to the border betweenand g8 in Fig. 6(a). Vi- <0.483. Examples of basin boundaries in regignare
sual inspection of basin boundaries for differént values  shown in Figs. ) and 2b). Corresponding to its lower
suggests the approximate location of this border shown iglimension[see Fig. €)], the boundary in Fig. () visually
Fig. 6(a). The “visual” determination of the border between appears less wiggly than that in Figb2[note the expanded
regionsa and B is consistent witkhlmax being the Lyapunov vertical scale in Fig. @)].
exponent of the period-2 unstable periodic orbit embedded in Figure @b) showsd versush,=In \, for ther value for
the chaotic seth; _=0.571(se¢18]). We also note that Fig. 2a) [20], namely,r =3.79. At thisr value the logistic

there is an unstable period-1 orbit &0 that has a still map has a chaotic attractor with>0. In this case, if,
larger Lyapunov exponettit;(x=0)=In r than the period-2 <h,, thenH(x)<1 for almost allx and the basin boundary
orbit. The period-1 orbit, however, is isolated and not in thecurve is everywhere nondifferentialfliee., it is of typed as

chaotic set. Thus, while it can lead to a singulafity(x i Fig. 2@)]. As h, is increased fronh,<h; to h,>h;, the
=0)<1], this singularity is isolated and for that reason we Hg|der exponentd (x) becomes 1 for all but a zero Lebesgue
choose to exclude it from our consideration in the definitionmeasure fractal set ofvalues and we obtain a basin bound-
of the border between regions and 8. That is, we effec- gy of typesy.
tively restrict our attention to the part of the boundary lying  “Finally, we note that other parameter variations can be
'trr‘]_reg'of‘ 77<X§d1 v]:/heretvky] s a syr:jalé pct’f't'vte nurnpe(ln_ tdiscussed in a similar vein. For example, fixihg at the
is region, aside from the period-3 attractor, all invarian . . . T aviac
sets are contained within an invariant fractal Cantor set an ﬁlléi;?ircFrlngéan?éragg Slrr]:éﬁEﬁilsgéwseo\;ag?;h?&lri\ézrIoerTJiltr']s are
this set has a dense Orb't; . . traversed. Such small windows probably occupy a small
_ As h, is reduced past,=h, _ the box-counting dlmgn— fraction of the Lebesgue measure betweerB.79 and the
sion of the set ok values whereH(x)<1 grows from its  yajye at the beginning of the period-3 window. In many ex-
value of zero ah,=h; . Thus there is a rang@egion5)  perimental settings parameter values are not continuously
where yax<0 andH(x)<1 on a Cantor set. In this case, varied but are changed in small finite steps. In such cases, it
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may be unlikely that a small window is encountered, andbelieve that these two plots evidence the same qualitative
thus they may not be relevant in many experimental settingsharacter, namely, a fractal set of sharp peaks with striated
If we ignore them and concentrate on the upper envelope dfasin strips similar to those of Figs(b) and ic) densely

theh, versusr curve, then, as the beginning of the period-3intertwined.

window is approachedTl—>0. Thus, in this envelope sense,
we expect to see a transition from a typeoundary[Fig. ACKNOWLEDGMENTS
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To obtain a boundary mixing typle characteristics with APPENDIX: ANALYTICAL EXAMPLE FOR  Xmax
type c characteristics, we aim to make the dynamics on the i o
boundary similar to that of the maj@a) with (2b') in some In Eq. (11) we require the value of(«) maximized over

region of the boundary, while in some other region we aim tcall ergodic invariant measures of the one.-dimensfiongl'map.
make it similar to the dynamics yielding the boundary in Fig. We also commented following Eq11) that in practice it is
1(b). For this purpose we consider the two-dimensional magot Possible to carry out this maximization. While this state-

given by Eq.(2b") and ment is true in general, in this appendix, as an illustration,
we consider a special example for which the maximization
Yo 1=A(X)[NyYn+ o 27%,) 1+ [ 1= q(X) IM(Y,), can be done. In particular, we consider the two-dimensional
Y (2)  Map given by Eq.(2a) together with the one-dimensional
map
whereg(x) and M(y) are the continuous piecewise linear
functions shoyvn in Figs.(@&) and 8b)'. 5 a X, for O=x<a
Th_e quantity q(x) mikes_ a continuous transition from Xpt1= Bl x—a) for asx<1, (A1)
g(x)=1 in x>0 to q(x)=0 in x<—1/2. Thus, inx>0 we
have where 8=1— «. This map may be viewed as a discontinu-
Yn+1=NyYntcCOg27X,), ous map on the interval 0<x<1 (discontinuity atx= «) or
as a continuous map on the cirdi@here x measures the
Xn+1=4.1X,(1—X,) +0.06y,. distance around the circumference of the circle and the

. . . L length of the circumference is).1For an ergodic invariant
For orbits that remain im>0 this dynamics is similar to that |\ ,a5sure of the one-dimensional mébl), there will be

for Egs. (28 and (2b"), which yielded Fig. ). Further-  some fraction of the time that an orbit generating this mea-

more, in the case of Fig.(§) the set corresponding to the ¢ e spends in (@), call it p, and a fraction * p that it
nondifferentiable peaks has an orbit visiting these peaks and

; ; ; " / spends in &,1). In this case we hav@;(u)=p In(1/a)
Lha'“slé’ rst:m;a;yselgkzo Thus our mag2h”) and(2a') should  “73 710 3/5)" Considering alje’s with the same fraction

For x<1/2, Eqs.(2") and (2&) reduce to p for (O,L-v), th(imaxmum randomness of an orpjitelding
the maximumh,e{(x)] comes when visits to (@) and

Ynir1=M(Yy), (a,1) are uncorrelated. That is, the measure is generated by
the random process that says that, on any given iterate, the
Xn+1= 0.5, +0.06y,—0.644. orbit is in (0a) with probability p and in (a,1) with prob-

) ) - ability 1—p, independent of which of these intervals were
This map yields a boundary consisting of a Cantor set o{;sjied in all previous history. The metric entropy is then
strips corresponding to thg— +c basin and the/——%=  given by the Shannon information for the uncorrelated
basif22]. Furthermore, we expect that almost all points N ventsh =p In(1/p) + (1— p)IN[ 1/(1- p)]. Thus we can

me .

x>0 eventually fall inx<0 (because >4). Thus the Can- assign a maximum value of(z2) over all measureg with a
tor set of stripes structure should be dense in the bounda%ﬁven b (0=p=1). We deno/tta thise(p)

even forx>0.

Figure 9a) shows a sectior(in x>0) of the basin of 1 1
attraction plot for the map given by Eq2b”) and(2a’) with pIn—=+(1-p)in 15" h,
Ay=1.03. The boundary appears to consist of a mixture of Y(p)= P —p
parts with sharp peaks plus other parts with locally black and | i S (1—p)] E
blank striped regions. Figurgl§ shows a basin of attraction L (1=p)in B
plot obtained for a system of differential equatidi$ used
to study the problem of phase synchronization of chaos. W nax is then the maximum ovep of the quantityy(p).
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