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Mixed basin boundary structures of chaotic systems

Epaminondas Rosa, Jr.* and Edward Ott†

Institute for Plasma Research, University of Maryland, College Park, Maryland 20742
~Received 13 July 1998!

Motivated by recent numerical observations on a four-dimensional continuous-time dynamical system, we
consider different types of basin boundary structures for chaotic systems. These general structures are essen-
tially mixtures of the previously known types of basin boundaries where the character of the boundary assumes
features of the previously known boundary types at different points arbitrarily finely interspersed in the
boundary. For example, we discuss situations where an everywhere continuous boundary that is otherwise
smooth and differentiable at almost every point has an embedded uncountable, zero Lebesgue measure set of
points at which the boundary curve is nondifferentiable. Although the nondifferentiable set is only of zero
Lebesgue measure, the curve’s fractal dimension may~depending on parameters! still be greater than one. In
addition, we discuss bifurcations from such a mixed boundary to a ‘‘pure’’ boundary that is a fractal nowhere
differentiable curve or surface and to a pure nonfractal boundary that is everywhere smooth.
@S1063-651X~99!02401-0#
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I. INTRODUCTION

The coexistence of two or more attractors provides
different long-time behaviors of a dynamical system depe
ing on its initial conditions. The set of points that asympto
cally approach a given attractor~its basin of attraction! will
have a boundary with the basin of attraction of the ot
attractor or attractors. Knowledge of the basin and its bou
ary thus supplies important information allowing a predicti
of the long-term behavior of a system. Basin boundaries
be either smooth or fractal and have been extensively stu
@1–6#. This paper is motivated by a recent study in which
observed a basin boundary structure that we believe has
viously not been seen or noted@7#. Our previous study in-
volved a four-dimensional flow. This presented difficulti
for computational analysis and verification of the suspec
boundary structure. For this reason, in this paper we res
most of our discussion to the case of simple maps, wh
understanding and computational verification are rea
available. We begin by reviewing some relevant backgrou
material.

A. Background

For typical dynamical systems, three basic characteri
topologies@1–6# of basin boundaries have been found@8#.

~a! The basin boundary can be a smooth curve or surfa
An example of this@9# is shown in Fig. 1~a! for the Hénon
map

xn115A2xn
22Jyn , ~1a!
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yn115xn , ~1b!

with A51.150 andJ50.3. For these parameter values the
are two attractors giving the long-term behavior of the s
tem for almost all initial conditions; the attractor for points
the black basin shown in Fig. 1~a! is (x,y)→`, while the
attractor for points in the blank basin is a periodic orbit
period 1.

~b! The boundary can locally have the character of a C
tor set of smooth curves or surfaces. This is illustrated@9# in
Fig. 1~b! and the blowup in Fig. 1~c! for the Hénon map with
parametersA51.405 andJ50.3. ~In this case the attracto
corresponding to the blank region is a periodic orbit of p
riod 2.!

~c! The boundary can be a continuous nowhere differ
tiable curve or surface. A simple example of this is provid
by the map@1,2#

yn115lyyn1cos~2pxn!, ~2a!

xn115lxxn mod1, ~2b!

with lx andly greater than 1 andlx an integer greater than
ly . This map has no attractor with finitey and almost all
initial conditions generate orbits that approach eithery5
1` or y52`, which we regard as the two attractors for th
system. Figure 1~d! shows the basin structure for this syste
with lx53 andly51.5. Blank corresponds to the basin
y51` and black to the basin ofy52`. In this case one
can analytically derive the equation of the basin bound
@1,2#

y52(
j 51

`

ly
2 j cos~2plx

j 21x!5 f W~x!. ~3!

The functionf W(x) is continuous and forly,lx is nowhere
differentiable~a Weierstrass curve! and fractal with dimen-
sion

d522 ln ly / ln lx . ~4!
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-
-
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FIG. 1. ~a! Smooth basin boundary for the He´non map.~b! Fractal basin boundary for the He´non map.~c! Enlargement of~b!. ~d! Basin
boundary that is a continuous nowhere differentiable curve.
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For ly.lx , on the other hand,f W(x) is everywhere differ-
entiable and consequently has dimension one~nonfractal!.

For typical dynamical systems represented by tw
dimensional invertible maps and three-dimensional flo
boundary typesa andb and mixtures thereof@10# appear to
be the only types of basin boundaries. Boundary typec is
possible for higher-dimensional invertible maps~map dimen-
sionality >3! or flows ~dimensionality >4! or for two-
dimensional noninvertible maps@e.g., Eqs.~2!#.

Although basin typesb and c are both fractal, they are
fundamentally different. One aspect of this difference is p
vided by the concept of accessibility@3#. We say a pointx on
a basin boundary isaccessiblefrom a given basinB if it is
possible to draw a finite length curve connecting a point
the interior ofB to x such that the curve never crosses a ba
boundary. Clearly, this is the case for a boundary of typea.
It is also the case for a boundary of typec. @For example, for
the case of Eq.~3!, any point on the boundary (xb ,yb),
where yb5 f W(xb), is accessible from a point (xb ,yb1D)
with D.0 (D,0) in the interior of they→1` (y→2`)
basin by a vertical line of lengthuDu connecting the two
points.# In contrast, for the example of Figs. 1~b! and 1~c!,
boundary points accessible from one basin are inacces
from the other basin and many boundary points~in fact, in an
appropriate sense,most boundary points! are inaccessible
from the interior of either basin. This occurs due to the C
tor set of lines boundary structure shown in Fig. 1~c!. In
particular, we can consider a boundary line in Fig. 1~c! such
that it is a limit set of other boundary lines from either sid
Points on such a boundary line are inaccessible from ei
side. In this case the chosen line segment is sandwiched
tween an infinite set of ever thinner black and blank ba
stripes accumulating on it from both sides@3#. Furthermore,
-
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as the basin stripes become thinner, they also become lo
~folding back and forth! and their lengths approach infinity

B. Outline

In this paper we give examples of basin boundaries t
are simultaneously of typec and of either typea or b, at
different points on the boundary. We also discuss the tra
tion, with system parameter variation, between this mix
boundary type and other boundary types. In Sec. II we d
cuss the possibility of mixed typec and typea boundaries.
We characterize these boundaries by use of the Ho¨lder ex-
ponent @11#. It is shown that a type of continuous fract
curve y5 f̃ (x) results whose dimension is greater than o
although the functionf̃ (x) is differentiable at all pointsx
except for a set of zero Lebesgue measure where the Ho¨lder
exponent is less than one. In Sec. III we consider bifurcati
whereby the structure of the basin boundary changes as
tem parameters are varied. In Sec. IV we give a map
ample of a mixed typec–typeb boundary and then compar
with our previously observed boundary structure found in
four-dimensional flow@7#.

II. A CONTINUOUS CURVE BASIN BOUNDARY THAT IS
DIFFERENTIABLE AT ALMOST EVERY POINT BUT

HAS A NONTRIVIAL FRACTAL DIMENSION

A. Hölder exponent

One way to derive the dimension formula~4! for the basin
boundary of the map given by Eqs.~2a! and ~2b! is by con-
sideration of the Ho¨lder exponent. We define the Ho¨lder ex-
ponentH(x) of a functiony5 f (x) at the pointx by

H~x!5 lim
Dx→0

inf$@ lnu f ~x1Dx!2 f ~x!u#/ lnuDxu% ~5a!
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if the right-hand side is less than 1, andH(x)51 if the
right-hand side is greater than 1. More informally we wri

Dy;uDxuH, ~5b!

where Dy5u f (x1Dx)2 f (x)u. If H(x).0, then f is con-
tinuous atx, and f is not differentiable atx for H(x),1. If
f (x) is differentiable atx, thenH(x)51.

Now consider two points on the basin boundary (x0 ,y0)
and (x01Dx0 ,y01Dy0), whereDx0 andDy0 are small, and
iterate them forwardn steps using Eqs. 2~a! and 2~b!. They
move to a pair of new points, which we denote (xn ,yn) and
(xn1Dxn ,yn1Dyn), both of which are necessarily also o
the basin boundary. Takingn large but not too large, we ma
still considerDxn and Dyn to be small. Since the Ho¨lder
exponent is the same at (x0 ,y0) and (xn ,yn) ~we show this
later!, we have

Dy0;uDx0uH, Dyn;uDxnuH. ~6!

The two Lyapunov exponents for the map~2a! and ~2b! are
h15 ln lx andh25 ln ly . Thus mappingDx0 andDy0 for-
wardn steps, ifH,1 ~implying uDyu@uDxu), we have from
~2a! and ~2b! that

Dxn;exp~nh1!Dx0 , Dyn;exp~nh2!Dy0 . ~7!

Combining Eqs.~6! and ~7! we obtain

H5h2 /h1 for h1.h2 . ~8!

For h1,h2 the curve is differentiable (H51). The box-
counting dimensiond of a curve on which the Ho¨lder expo-
nent isH is given by@12#

d522H, ~9!

which with Eq.~8! yields Eq.~4!. Equation~9! results from
the following simple argument. Consider ane grid in x-y
space. For anye interval (x,x1e), the number of boxes from
the grid necessary to vertically cover the segment of
curve y5 f (x) in that x interval is of order u f (x)2 f (x
1e)u/e;eH/e and the number ofe intervals needed to cove
a finite range ofx scales like 1/e. Thus the number ofe boxes
needed to cover the curve scales like 1/e22H, which gives
Eq. ~9!.

We now modify the map given by Eqs.~2a! and ~2b!. In
particular, we replace Eq.~2b! by the logistic map@13#

xn115rxn~12xn!. ~2b8!

Choosingr andly such that a typical orbit for Eq.~2b8! is
chaotic with Lyapunov exponenth̄1.h25 ln ly , we obtain
the fractal nowhere differentiable curve shown in Fig. 2~a!
(r 53.79 andly51.20). The nowhere differentiability an
fractality follows fromh̄1.h2 and Eqs.~8! and~9!. Thus the
boundary curve in Fig. 2~a! may be regarded as being simil
to the one shown in Fig. 1~d! for Eqs.~2a! and~2b!. @Hereh̄1
denotes the value of the logistic map Lyapunov expon
that results for almost every choice of initial conditionx in
0,x,1. That is, if an initial condition is chosen with un
form probability density in 0,x,1, then with probability
e

t

one the result ish1(x)5h̄1. Note, however, that as discusse
subsequently, there are ‘‘zero probability’’ initial condition
for which h1(x)Þh̄1 .#

Now changer so that it yields a period-3 attractor in th
period-3 window. In this case almost every initial conditio
for Eq. ~2b8! goes to the period-3 attractor. Hence,h1,0 for
almost everyx so thath25 ln ly.h1 and H51, implying
that the curve is differentiable at almost every pointx. Note,
however, that there is still a zero Lebesgue measure se
points for which the orbits of the logistic map are chao
~but not attracting@14#!. For these exceptional initial point
h1.0 and possibly we may also haveh1.h2. The conse-
quence of this is shown in the example illustrated in Fig. 2~b!
for r 53.835 andly51.20. We see that the curve separati
the y51` basin~blank! from the y52` basin~black! is
smooth in many intervals, but that there are also many po
where the boundary appears to have a nondifferentia
spike. This is a consequence of the repelling chaotic set
on the basis of Eq.~8! we claim that those points at whic
spikes (H,1) appear correspond tox values on the repelling
chaotic set withh1(x).h2.

B. Fractal dimension

One interesting aspect of this type of basin bound
structure@Fig. 2~b!# is that the basin boundary may have
fractal dimension exceeding 1, even though it is continuo
everywhere and is also differentiable at all points except
a set ofx of zero Lebesgue measure. To see this, we star
considering the following hypothetical case. Suppose tha~i!
there is a set ofx points S of zero Lebesgue measure an
fractal dimension 0,dx,1 on which the Ho¨lder exponent
has the same value for allxPS and 0,H,1 and ~ii ! the

FIG. 2. Basins of attraction for the map given by Eqs.~2a! and
~2b8! for ly51.20 with ~a! r 53.79 and~b! r 53.835.
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boundary is smooth at all otherx points (H51). Again con-
sider ane grid in x-y space. The number ofe boxes needed to
cover the smooth portion of the curve scales as 1/e. The
contribution from the number of boxes needed to cover
nondifferentiable part of the curve scales like (1/edx)(eH/e),
where the first factor is the number ofe intervals inx con-
taining nondifferentiable points and the second factor is
number of boxes needed to vertically cover that part of
boundary curve lying in such ane interval in x. Thus we
obtain the following result for the box-counting dimension
the curve:

d5H 11dx2H if dx.H

1 if dx<H.
~10!

In the above argument we have assumed that the Ho¨lder
exponentH is the same for all pointsx in S and thatH51
~differentiable! everywhere else. For our basin boundary e
ample@Fig. 2~b!# this is not the case. In particular, the on
dimensional map~2b8! has many ergodic invariant measur
embedded in the set of points that do not go to the perio
orbit. For example, there are an infinite number of unsta
periodic orbits embedded in the repelling chaotic invari
set and these, in general, have different Lyapunov expon
h1 from each other. As a result of Eq.~8! they also have
different Hölder exponents ifh1.h2. Nevertheless, there i
an important uniformity property of the Ho¨lder exponents:
For any ergodic invariant measurem there is a unique con-
stant Hölder exponent value such that the set of x values
which H(x) takes on this value hasm measure 1@15#.

To see that this must be so we first note that, by
smoothness of the map, one iterate of the map applied
small region of the boundary curve results in an approxim
linear deformation of the small region. Thus by Eq.~5a!, H
at a point and at its iterate are the same. Now assume tha
italicized statement above is not true. Then there is a num
H* such that we can define two sets ofx valuesS1 andS2
for which m(S1).0 andm(S2).0 with H(x)>H* for all x
in S1 andH(x),H* for all x in S2. SinceH is invariant to
one application of the map, no iterate of a point inS1 can
map toS2 and vice versa. This contradicts the ergodicity
m, thus proving thatH must be the same for a set ofx values
of m measure 1. Note that, by Oseledec’s multiplicative
godic theorem, the Lyapunov exponents are also the s
for almost every point with respect to an ergodic measurem.
@Thus, for any ergodic invariant measure, the two sides
Eq. ~8! are constant for almost allx with respect tom, H
5h2 /h1.#

With this knowledge we can now make a modification
Eq. ~10! that we conjecture applies to cases such as our
ample in Fig. 2~b!,

d5H 11xmax if xmax.0

1 if xmax<0,
~11a!

where

xmax5 lim
m

sup@ d̃x~m!2h2 /h̃1~m!# ~11b!

is the maximum value over all ergodic invariant measurem

for the map~2b8! of the dimensiond̃x(m) of m minus the
e
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Hölder exponent of the measurem @the Hölder exponent uni-
form on the measurem is by Eq.~8! equal toh2 /h̃1(m), with
h̃1(m) the Lyapunov exponent for the measurem#. Equation
~11! is motivated by the observation that the dimension
the union of a finite~countable infinite! number of sets is
equal ~at least equal! to that of the set whose dimension
largest. In particular, if we evaluatex(m)[d̃x(m)
2h2 /h̃1(m) for any invariant measure@not necessarily the
measure that maximizesx~m!#, then application of Eq.~10!
with this value inserted fordx2H yields a lower bound for
d,

d>d̃~m![H 11x~m! if x~m!.0

1 if x~m!<0.
~12!

Furthermore, ifx~m! is positive for anym, then Eq.~12!
provides a sufficient condition for the box-counting dime
sion of the basin boundary curve to be greater than one
practice, in a numerical example, such as that of Fig. 2~b!,
we have no way of performing the maximization prescrib
by Eq.~11b!. ~For a special example that is analytically sol
able see the Appendix.! Thus, in general, the only numerica
results accessible to us will be by use of a particular meas
and Eq.~12!. In this regard we shall be utilizing the ‘‘natu
ral’’ measure on the repelling invariant chaotic set of t
one-dimensional map~2b8!. We denote this measurem* .

In addition to Eq.~12!, there is a second useful resu
obtainable from Eq.~11!. Specifically, the border separatin
the cased.1 from the cased51 ~i.e., xmax50) gives a
condition onh2. This condition can be determined by notin
that the dimensiond̃x(m) of a measure of a one-dimension
map is@16#

d̃x~m!5
h̃met~m!

h̃1~m!
, ~13!

where h̃met(m) is the metric entropy form. The condition
xmax50 then gives@see Eq. 11~b!# h25 limmsuph̃met(m).
The right-hand side of this equation is just the topologi
entropy, which we denotehtop . Thus we obtain from Eq.
~11!

d.1 for h2,htop , ~14a!

d51 for h2>htop . ~14b!

We now apply Eq.~12! to the case shown in Fig. 2~b!. We
evaluate the lower boundd̃(m* ) from Eq. ~12!. We then
directly evaluated by use of the uncertainty exponen
method@1,6# and compare with the predicted lower bound

To find h̃1(m* ) at r 53.835@the value used for Fig. 2~b!#,
we sprinkle many initial conditionsN randomly in the inter-
val @0,1# and iterate each oneT@1 iterates~say T5100).
We then determine those initial conditions whose orbits h
still not yet fallen close to the period-3 orbit at iterateT ~here
we, somewhat arbitrarily, define an orbit as falling close
the period-3 orbit if it is ever within a distance of 0.01 of th
middle point of the three points visited!. Selecting those and
averaging their Lyapunov exponents computed over the t
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interval 0 toT25, we obtain an estimate of the Lyapuno
exponenth1 for the natural measure on the repelling inva
ant chaotic set.~The true value is obtained in the limitN
→`, T→`.! In this way we obtain

h̃1~m* !>0.498. ~15!

To obtain d̃x(m* ) for the case wherem is the natural
measure,m5m* , we note that in this case@17#

h̃met~m* !5h̃1~m* !2
1

t
, ~16a!

which from Eq.~13! gives

d̃x~m* !5

h̃1~m* !2
1

t

h̃1~m* !
, ~16b!

wheret is the decay time of the repelling invariant chao
set. This gives the lower bound ford,

d̃~m* !522

h22
1

t

h̃1~m* !
. ~17!

The decay timet is numerically obtained by sprinkling man
initial conditions uniformly in@0,1#, iterating them, and re
cording the number of orbitsN(t) at iteratet that have still
not yet fallen within some small neighborhood of th
period-3 orbit. For larget, @N(t)/N(0)#;exp2(t/t). Thus
to find t we plot ln@N(t)/N(0)# versust, fit a straight line to
the resulting data, and estimate 1/t as minus the slope of thi

FIG. 3. lnf(e) versus lne.

FIG. 4. Graph ofgr(x) for r 54.1.
line. We obtain 1/t50.041. Using Eqs.~15! and ~16b! to-
gether withh25 ln ly5 ln 1.2050.182 in Eq.~17! yields

d̃~m* !>1.55. ~18!

As previously mentioned, the direct calculation ofd is
done by use of the uncertainty exponent. To do this
choose some region ofx-y space containing the boundar
@e.g., the region shown in Fig. 2~b!#. We then sprinkle many
initial conditions (xi ,yi), i 51,2,. . . ,N with N very large,
randomly in this region. Next we perturb each initial cond
tion to a new point (xi1e,yi1e). We then iterate each pai
(xi ,yi) and its perturbation. The fraction of original pointsN
for which the point and its perturbation eventually go
different attractors~in the present example, to large positiv
y and large negativey! is denotedf~e!. For a boundary that
is everywhere smoothf~e! scales likee for small e. For a
boundary with box-counting dimensiond.1, on the other
hand, f~e! scales like ea with 0,a,1 and a5D2d,
whereD is the dimension of phase space@1,6#. ~This shows
the practical importance of the existence of a fractal ba
boundary; ifa is substantially less than one, the probabil

FIG. 5. ~a! Basin boundary for the map given by Eqs.~2a! and
~2b9!. ~b! Enlargement of~a!. ~c! Basin boundary for the map give
by Eqs.~2a! and ~2b-!.
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TABLE I. Characterization of boundary typesa, b, g, andd.

Boundary
types

d Set ofx for
smooth set

Nondifferentiable
set

xmax Hmin H̄ Figure

a 1 all x empty ,0 1 1 7~a!

b 1 Lebesgue measure one 1.dx.0 ,0 ,1 1 7~b!

g .1 Lebesgue measure one 1.dx.0 .0 ,1 1 2~b! 7~c!

d .1 empty dx51 .0 ,1 ,1 2~a!
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of incorrectly predicting the attractor from an initial cond
tion with some small error in its specification is greatly e
hanced.! Figure 3 shows a plot of lnf(e) versus lne for the
example of Fig. 2~b!. The slope of a straight line fitted to thi
data isa>0.44, corresponding to

d522a[1.56. ~19!

This is consistent with the lower bound estimate~18! and
indeed the lower bound estimate~18! is close to the esti-
matedd value in Eq.~19!.

It is instructive to consider another example of this type
boundary. For this example we again use Eq.~2a! for the y
component of the map. For thex component of the map we
use

xn115gr~xn![H rxn~12xn! for xn>2
1

4

0.5S xn1
1

4D2
5r

16
for xn,2

1

4
.

~2b9!

The map functiongr(x) is continuous and is graphed in Fig
4 for r 54.1, which is the value we use below. Sincer .4,
there is only a chaotic transient set in 0,x,1; almost every
initial condition in 0,x,1 eventually falls into the loss
regionL ~Fig. 4!, two iterates after which it maps to negativ
x, and then is attracted by the fixed pointx5x* ,0 ~Fig. 4!.
Thus almost all initial conditions for the one-dimension
map~2b9! go tox5x* . There is, however, an invariant cha
otic Cantor set in 0<x<1 that remains in 0<x<1 forever.
Thus, as in our previous example@Fig. 2~b!#, for ly not too
large, we expect singularities (H,1) on this Cantor set. Fig
ure 5~a! shows the resulting basins for the casely51.3 and
Fig. 5~b! shows a blowup of a small region of the bounda
in Fig. 5~a!. Measurements of the uncertainty dimension
this case gived>1.53. Thus the boundary of Fig. 5~a! has all
the same essential features as the boundary of Fig. 2~b!.

C. Typicality

We claim that basin boundaries of the character we h
been discussing should occur in cases that might natu
arise in the consideration of dynamical systems in typi
applications. While some evidence of this is provided by
differential equations example@7# discussed at the end o
Sec. IV, we note that the examples we have discussed s
have the feature that thex dynamics is uninfluenced by th
evolution of y. This is a special type of property not to b
expected in typical systems encountered in practice.
verify that this special feature is not responsible for the p
-

f

l

e
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e
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nomena we have demonstrated, we modify our map~2a! and
~2b9! to couple they dynamics to thex dynamics. To this end
we replace Eq.~2b9! by

xn115gr~xn!10.06yn. ~2b9!

Figure 5~c! shows a blowup of a small section of the bas
boundary for the two-dimensional map given by Eqs.~2a!
and~2b9! with ly51.3 andr 54.1 @as in Fig. 5~a!#. Compar-
ing Figs. 5~b! and 5~c!, it is seen that they appear visually t
have similar character.

One difference between the example of Fig. 5~b! and the
example of Fig. 5~c! is the following. For the example o
Fig. 5~b! the boundary is a functiony5 f (x). That is, there is
a rectangular coordinate system such that for eachx there is
one and only one boundary point, thus determining a uni
value of y. For Fig. 5~c! it is not clear that such a nice
coordinate system could be found and this situation is to
expected in typical cases. Thus we seek to characterize
potential common features of the example in Fig. 5~b! and
cases like that in Fig. 5~c! in such a way that these chara
terizations are independent of coordinate system. We p
pose the following properties as potential coordinate-syst
independent characterizations on the basis of which we
that the basin boundaries in Figs. 5~b! and 5~c! are similar.

~i! All boundary points are accessible from both basi
„As discussed in Sec. I A, this is not the case for type~b!
basins@e.g., Figs. 1~b! and 1~c!#.…

~ii ! The boundary is smooth at all points except for
totally disconnected set of nonsmooth points~i.e., it is not
possible to connect any two points in the nonsmooth set b
curve completely contained in the nonsmooth set!. Further-
more, any neighborhood of a point where the boundary is
smooth contains smooth pieces.@We have verified the latte
for Fig. 5~c! by making successive blowups around one
the nonsmooth points.#

~iii ! The boundary~although nonsmooth only on a set o
points of box-counting dimension less than one! has a box-
counting dimension greater than one.@Using the uncertainty
exponent method we have estimated that the dimensio
the basin boundary in Fig. 5~c! is d>1.48.#

III. CHANGES IN BASIN BOUNDARY STRUCTURE WITH
VARIATION OF SYSTEM PARAMETERS

The types of basin boundaries shown in Fig. 2~a! ~a no-
where differentiable curve with dimensiond.1) and in Fig.
2~b! ~an almost everywhere differentiable curve withd.1)
are not the only possible basin boundary types for the m
given by Eqs.~2a! and~2b8!. In fact, based on the discussio
in Sec. II @particularly Eqs.~8!–~14!#, we can distinguish
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four boundary types depending on the map parameters.
label these boundary typesa, b, g, andd, in order of increas-
ing fractality: typea, everywhere smooth curve (d51); type
b, smooth almost everywhere with singularities@H(x),1#
on a fractal set ofx and a curve dimensiond51; type g,
same asb, but d.1; and type d, Weierstrass curve~i.e.,
nowhere differentiable andd.1!.

The boundaries in Figs. 2~a! and 2~b! are of typesd andg,
respectively. Table I provides further characterization of
above boundary types. In Table I,Hmin denotes the smalles
Hölder exponent at any point on the boundary curve, whi
from Eq. ~8!, is

Hmin5
h2

h1max

~20!

if the right-hand side of Eq.~20! is less than 1, andHmin
51 otherwise. In Eq.~20!, h1max

denotes the logistic map
Lyapunov exponent maximized over all invariant measu
@18#. Also, H̄ in Table I is the Ho¨lder exponent assumed fo
initial x at almost every point in 0<x<1, which from Eq.
~8! is

H̄5
h2

h̄1

~21!

if the right-hand side of Eq.~21! is a positive number les
than 1, andH̄51 otherwise. The quantityh̄1 is the logistic

FIG. 6. Graph ofd versush2 for ~a! r 53.835 and~b! r 53.79.

The values ofh̄1 andhtop in 6~b! are estimated from the graph o
these quantities versusr in Ref. @21#.
e

e

,

s

map Lyapunov exponent for Eq.~2b9! assumed for almos
every initial condition in 0<x<1 ~i.e., if an initialx value is
chosen randomly, with probability 1, the resulting Lyapun

exponent ish̄1).
In order to see how these different boundary types ar

consider Fig. 6~a!, which schematically shows the dimensio
of the basin boundaryd ~some points numerically deter
mined by the uncertainty exponent technique are shown
solid dots in the figure@19#! as a function ofh25 ln ly for
r 53.835. Thisr value is that used for Fig. 2~b! and yields a
period-3 attractor for the logistic map. Consequently,h̄1,0
~this will imply that a typed boundary does not occur fo
this case!. Also shown in Fig. 6~a! as vertical dashed line
are ranges where boundaries of typesa, b, andg occur. In
regiona, h2 exceeds the Lyapunov exponent of the logis
map for all initial conditions inx, h2.h1max

. Thus, by Eq.

~8!, H51 everywhere and the curve is smooth. An exam
of this is shown in Fig. 7~a!.

As h2 is decreased, there comes a point where it pas
through the largest possible Lyapunov exponenth1max

. For

FIG. 7. Graph of basin boundary pictures for~a! r 53.835 and
ly52.1, ~b! r 53.835 andly51.7, and~c! r 53.835 andly51.3.
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h2,h1max
there is a set ofx points whereH(x),1 and the

boundary curve is nondifferentiable~singular! at these
points. When this first occurs,xmax is still negative and so
d51. In fact, it is expected thath1max

is attained for a low-
period unstable periodic orbit@18#. In this case, the appli
cable measure is thed measure on the periodic orbit an
dx(m)50 for this m. Consequently, ath25h1max

, we have

xmax52h2 /h1max
,0.

We have not determined the precise pointh25h1max
cor-

responding to the border betweena andb in Fig. 6~a!. Vi-
sual inspection of basin boundaries for differenth2 values
suggests the approximate location of this border shown
Fig. 6~a!. The ‘‘visual’’ determination of the border betwee
regionsa andb is consistent withh1max

being the Lyapunov
exponent of the period-2 unstable periodic orbit embedde
the chaotic set,h1max

50.571 ~see@18#!. We also note that

there is an unstable period-1 orbit atx50 that has a still
larger Lyapunov exponenth1(x50)5 ln r than the period-2
orbit. The period-1 orbit, however, is isolated and not in t
chaotic set. Thus, while it can lead to a singularity@H(x
50),1#, this singularity is isolated and for that reason w
choose to exclude it from our consideration in the definit
of the border between regionsa and b. That is, we effec-
tively restrict our attention to the part of the boundary lyi
in region h,x<1 whereh is a small positive number.~In
this region, aside from the period-3 attractor, all invaria
sets are contained within an invariant fractal Cantor set
this set has a dense orbit.!

As h2 is reduced pasth25h1max
, the box-counting dimen-

sion of the set ofx values whereH(x),1 grows from its
value of zero ath25h1max

. Thus there is a range~regionb!

wherexmax,0 andH(x),1 on a Cantor set. In this cas

FIG. 8. ~a! q(x) versusx. ~b! M (y) versusy.
in

in

e

t
d

becausexmax,0, the curve dimensiond is still one @Eq.
~11!#. An example of such a boundary is shown in Fig. 7~b!.

A further decrease ofh2 eventually results inxmax.0 as
the border between regionb and regiong is crossed. By Eq.
~14! this occurs ath25htop . The topological entropy in a
window of the logistic map is constant~i.e., independent ofr
for r in the window! and may be computed analytically from
consideration of the symbolic dynamics associated with
given window. In the case of the period-3 window, the top
logical entropy is the logarithm of the golden meanhtop

5 ln @(11A5)/2#50.483 and regiong corresponds toh2
,0.483. Examples of basin boundaries in regiong are
shown in Figs. 7~c! and 2~b!. Corresponding to its lower
dimension@see Fig. 6~a!#, the boundary in Fig. 7~c! visually
appears less wiggly than that in Fig. 2~b! @note the expanded
vertical scale in Fig. 7~c!#.

Figure 6~b! showsd versush25 ln ly for the r value for
Fig. 2~a! @20#, namely,r 53.79. At thisr value the logistic
map has a chaotic attractor withh̄1.0. In this case, ifh2

,h̄1, thenH(x),1 for almost allx and the basin boundar
curve is everywhere nondifferentiable@i.e., it is of typed as
in Fig. 2~a!#. As h2 is increased fromh2,h̄1 to h2.h̄1, the
Hölder exponentH(x) becomes 1 for all but a zero Lebesgu
measure fractal set ofx values and we obtain a basin boun
ary of typeg.

Finally, we note that other parameter variations can
discussed in a similar vein. For example, fixingh2 at the
value for Fig. 2~a! and increasingr, the value ofh̄1 varies in
an erratic manner as small windows of high-period orbits
traversed. Such small windows probably occupy a sm
fraction of the Lebesgue measure betweenr 53.79 and ther
value at the beginning of the period-3 window. In many e
perimental settings parameter values are not continuo
varied but are changed in small finite steps. In such case

FIG. 9. ~a! Basins of attraction fory→1` ~blank! and y
→2` ~black! for the map given by Eqs.~2b-! and ~2a8!. ~b! Ba-
sins of attraction~Fig. 6 of Ref.@7#!.
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may be unlikely that a small window is encountered, a
thus they may not be relevant in many experimental settin
If we ignore them and concentrate on the upper envelop
the h̄1 versusr curve, then, as the beginning of the period
window is approached,h̄1→0. Thus, in this envelope sens
we expect to see a transition from a typed boundary@Fig.
2~a!# to a typeg boundary with increasingr. We note that
this transition occurs in the region of chaotic attractors
the logistic map at anr valuebelow that at the beginning o
the period-3 window.

IV. MIXED TYPE b–TYPE c BASIN BOUNDARIES

To obtain a boundary mixing typeb characteristics with
type c characteristics, we aim to make the dynamics on
boundary similar to that of the map~2a! with ~2b8! in some
region of the boundary, while in some other region we aim
make it similar to the dynamics yielding the boundary in F
1~b!. For this purpose we consider the two-dimensional m
given by Eq.~2b-! and

yn115q~xn!@lyyn1cos~2pxn!#1@12q~xn!#M ~yn!,
~2a8!

where q(x) and M (y) are the continuous piecewise line
functions shown in Figs. 8~a! and 8~b!.

The quantityq(x) makes a continuous transition from
q(x)[1 in x.0 to q(x)[0 in x,21/2. Thus, inx.0 we
have

yn115lyyn1cos~2pxn!,

xn1154.1xn~12xn!10.06yn .

For orbits that remain inx.0 this dynamics is similar to tha
for Eqs. ~2a! and ~2b-!, which yielded Fig. 5~c!. Further-
more, in the case of Fig. 5~c! the set corresponding to th
nondifferentiable peaks has an orbit visiting these peaks
this orbit stays inx.0. Thus our map~2b-! and~2a8! should
have similar peaks.

For x,1/2, Eqs.~2b-! and ~2a8! reduce to

yn115M ~yn!,

xn1150.5xn10.06yn20.644.

This map yields a boundary consisting of a Cantor set
strips corresponding to they→1` basin and they→2`
basin@22#. Furthermore, we expect that almost all points
x.0 eventually fall inx,0 ~becauser .4). Thus the Can-
tor set of stripes structure should be dense in the bound
even forx.0.

Figure 9~a! shows a section~in x.0) of the basin of
attraction plot for the map given by Eqs.~2b-! and~2a8! with
ly51.03. The boundary appears to consist of a mixture
parts with sharp peaks plus other parts with locally black a
blank striped regions. Figure 9~b! shows a basin of attractio
plot obtained for a system of differential equations@7# used
to study the problem of phase synchronization of chaos.
d
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believe that these two plots evidence the same qualita
character, namely, a fractal set of sharp peaks with stria
basin strips similar to those of Figs. 1~b! and 1~c! densely
intertwined.
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APPENDIX: ANALYTICAL EXAMPLE FOR xmax

In Eq. ~11! we require the value ofx(m) maximized over
all ergodic invariant measures of the one-dimensional m
We also commented following Eq.~11! that in practice it is
not possible to carry out this maximization. While this sta
ment is true in general, in this appendix, as an illustrati
we consider a special example for which the maximizat
can be done. In particular, we consider the two-dimensio
map given by Eq.~2a! together with the one-dimensiona
map

xn115H a21xn for 0<x,a

b21~xn2a! for a<x<1,
~A1!

whereb512a. This map may be viewed as a discontin
ous map on thex interval 0<x<1 ~discontinuity atx5a) or
as a continuous map on the circle~where x measures the
distance around the circumference of the circle and
length of the circumference is 1!. For an ergodic invariant
measure of the one-dimensional map~A1!, there will be
some fraction of the time that an orbit generating this m
sure spends in (0,a), call it p, and a fraction 12p that it
spends in (a,1). In this case we haveh̃1(m)5p ln(1/a)
1(12p)ln(1/b). Considering allm ’s with the same fraction
p for (0,a), the maximum randomness of an orbit@yielding
the maximum h̃met(m)# comes when visits to (0,a) and
(a,1) are uncorrelated. That is, the measure is generate
the random process that says that, on any given iterate
orbit is in (0,a) with probability p and in (a,1) with prob-
ability 12p, independent of which of these intervals we
visited in all previous history. The metric entropy is the
given by the Shannon information for the uncorrelat
eventsh̃met5p ln(1/p)1(12p)ln@1/(12p)#. Thus we can
assign a maximum value ofx(m) over all measuresm with a
given p (0<p<1). We denote thisx(p),

x~p!5

p ln
1

p
1~12p!ln

1

12p
2h2

p ln
1

a
1~12p!ln

1

b

.

xmax is then the maximum overp of the quantityx(p).
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